Thursday, 30 May 2013

Trigonometric functions of an acute angle (All Mathematical Formulae) --By: Vinod Kumar Dhundhara

Trigonometric functions of an acute angle

Trigonometric functions of an acute angle are ratios of different pairs of sides of a right-angled triangle 

( Fig. )

   1)   Sine:  sin A = a / c   ( a ratio of an opposite leg o a hypotenuse ) .  
   2)   Cosine:  cos A = b / c  ( a ratio of an adjacent leg to a hypotenuse ) .
   3)   Tangent:  tan A = a / b   ( a ratio of an opposite leg to an adjacent leg ) .
   4)   Cotangent:  cot A = b / a   ( a ratio of an adjacent leg to an opposite leg ) .
   5)   Secant:   sec A = c / b   ( a ratio of a hypotenuse to an adjacent leg ) .
   6)  Cosecant:  cosec A = c / a   ( a ratio of a hypotenuse to an opposite leg ) .
There are analogous formulas for another acute angle B ( Write them, please ! ).
E x a m p l e .  A right-angled triangle ABC  ( Fig.2 ) has the following legs:
                       a = 4,  b = 3. Find sine, cosine and tangent of angle A.
S o l u t i o n .  At first we find a hypotenuse, using Pythagorean theorem:
                              c 2 = a 2 + b 2,

According to the above mentioned formulas we have:
                       sin A = a / c = 4 / 5;  cos A = b / c = 3 / 5;  tan A = a / b = 4 / 3. 
For some angles it is possible to write exact values of their trigonometric functions. The most important cases are presented in the table:
 Although angles 0° and 90° cannot be acute in a right-angled triangle, but at enlargement of notion of trigonometric functions ( see below), also these angles are considered. A symbol    in the table means that absolute value of the function increases unboundedly, if the angle approaches the shown value.

No comments:

Post a Comment